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Abstract

Predictive rate-distortion (RD) optimized motion estimation techniques are studied and

developed for very low bit rate video coding. Four types of predictors are studied: mean,

weighted mean, median, and statistical mean. The weighted mean is obtained using con-

ventional linear prediction techniques. The statistical mean is obtained using a finite-state

machine modeling method based on dynamic vector quantization. By employing prediction,
the motion vector search can then be constrained to a small area. The effective search area

is reduced further by varying its size based on the local statistics of the motion field, through

using a Lagrangian as the search matching measure and imposing probabilistic models dur-

ing the search process. The proposed motion estimation techniques are analyzed within a

simple DCT-based video coding framework, where an RD criterion is used for alternating

between three coding modes for each 8 x 8 block: motion only, motion compensated pre-
diction and DCT, and intra DCT. Experimental results indicate that our techniques yield

very good computation-performance tradeoffs. When such techniques are applied to an RD

optimized H.263 framework at very low bit rates, the resulting H.263 compliant video coder

is shown to outperform the H.263 TMN5 coder in terms of compression performance and

computations, simultaneously.

*This work was supported by the Natural Sciences and Engineering Research Council of Canada under grant
# OGP-0187668 and NASA.



1 Introduction

A variety of motion estimation algorithms have been developed for very low bit rate video

coding. However, the block matching algorithm (BMA) [1] stands as the most popular and

the simplest in concept, design, and implementation. In fact, many new BMA-based video

compression algorithms allow transmission or storage of QCIF resolution video with acceptable

quality at bit rates as low as 16 kilobits per second (kbps) [2, 3, 4, 5]. Most notable are the H.263-

based video coders [6], which have recently been shown to outperform video coders using more

complex object-based and model-based motion estimation algorithms. A two-step BMA-based

motion estimation algorithm is adopted in many H.263-based video Coder implementations such

as Telenor's TMN5 [7]. The first step is an integer-pel accuracy full-search BMA (FS-BMA). The

second step is aimed at improving the estimation accuracy, producing motion vector estimates

with ½-pel accuracy.

There are many problems associated with the above two-step motion estimation algorithm.

The FS-BMA is well known for its large computation requirements, which has fueled many

research activities. Such activities have produced more efficient algorithms [1, 3] such as log

search, three-step search, cross search, conjugate gradient search, hierarchical search, and block

subsampling. However, most of these algorithms may quickly get trapped in local minima,

yielding a significant loss in motion vector estimation performance. Moreover, the FS-BMA

performs poorly during intensity and reflectance illumination changes, non-translational motion

activities such as zoom and rotation, scene changes, and occlusions. This, coupled with the

FS-BMA's sensitivity to video input noise, produces a non-smooth motion field that costs many

precious bits in very low bit rate video coding applications. Finally, producing motion vector

estimates with ½-pel accuracy increases both the complexity and the bit rate while yielding a

relatively insignificant improvement in video quality.

In this paper, we present predictive rate-distortion (RD) optimized motion estimation tech-

niques employing several predictors and search methods. The proposed techniques reduce

substantially the number of computations, produce a smoother motion field and yield better

reproduction quality, simultaneously. The techniques are analyzed and compared in the context

of a simple DCT-based video coding framework, where only 8 × 8 blocks are used and only three

coding modes (motion only, motion compensated prediction and DCT, intra DCT) are allowed.

An RD criterion, expressed by the Lagrangian D + AR, is used to alternate between the above

coding modes.



In very low bit rate videocodingapplicationssuchas videotelephony,the motion field

is very structuredand slowly varying. Moreover,the motion vectorsareusually limited in

magnitude.This suggeststhat significantcomputationand codinggainscanbe achievedby

taking advantageof the strongspatio-temporaldependenciesthat exist betweenthe motion

vectors.Memoryhasalwaysbeenincorporatedinto the motionvectorcodingprocess,but very

fewresearchershavesuggestedexploitingit to simplifymotionestimation.Recently,predictive

motion estimation[8, 9, 10, 11, 12,13]hasbecomean important researcharea. This paper

studiesthe complexityandperformanceof twolinearpredictors(meanandweightedmean)and

two non-linearpredictors(medianand statisticalmean)whenappliedto motion estimation

in the contextof very low bit rate videocoding. Conventionallinear predictiontechniques

are usedto obtain the meanand weightedmean. The statistical meanis estimatedusing

conditionalprobabilitiesobtainedvia afinite-statemachine(FSM) that isuniquelydetermined

by a dynamicstatevectorquantization(VQ) codebook.

By employingprediction,wecan restrict the motion vectorsearchto a smallareawhose

centeris the predictedmotion vector. To further reducethe searchareasize,we introduce

two probabilisticmodelsthat placesoft constraintson its size,allowingthe areato expandor

contractasa function of the local statisticsof the motion field. Let's assume that the search

area is divided into layers, as will be described later. The first model is based on the hypothesis

that if the cost, expressed here in terms of a Lagrangian, increases when going from one layer

to the next, then it is unlikely that we will find a better motion vector by continuing the search

outward. The second model is much more constrained because it is based on the hypothesis

that only when the cost increases monotonically over a sequence of three layers, that searching

more layers for a better motion vector is not required. Because there are many areas when

non-motion changes occur, a hard constraint is placed on the maximum number of layers that

can be searched.

Another characteristic of very low bit rate video coding applications is that the motion

vector bit rate occupies a substantial portion (as much as 50%) of the total bit rate. RD

optimized motion estimation algorithms have been introduced [14, 17, 18] [15, 16, 11, 19, 12]

that reduce the motion vector bit rate substantially. Another attractive solution is to code

in a non-lossless fashion the motion vectors using, for example, VQ [20, 15, 11] or statistical

methods [16, 11]. In this paper, we build on our earlier work [15, 16, 11, 19, 12], where we

employ a Lagrangian (matching error biased by motion vector bit rate) as the search matching

measure. Given specific constraints, such a measure yields the best RD tradeoffs.
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Our motion estimationtechniquesaresimpleand computationallyefficient,yet their esti-

mation performanceis comparableto that of the FS-BMA,evenwhenthe Lagrangian D + AR

is minimized in both cases. When the proposed techniques are applied to an H.263 RD op-

timized framework, the resulting H.263 compliant very low bit rate video coder outperforms

Telenor's best TMN5 coder in terms of both computations and quality. Our video coder also

has the important advantage that the quality, bit rate, and complexity are easily controllable.

In what follows, we present the proposed motion estimation techniques. This is followed by

a description of our DCT-based video coding framework. Section 4 briefly describes the RD

optimized H.263 framework used for the development of the H.263 compliant video coder. The

last two sections present our experimental results and some conclusions, respectively.

2 Proposed Motion Estimation Techniques

We here develop motion estimation techniques where the spatio-temporal statistical depen-

dencies within the motion field are effectively exploited. Our objective is mainly to ease the

computational burden, although our techniques Mso improve the RD tradeoffs and reduce the

estimation's sensitivity to video input noise. Before we describe the techniques, several param-

eters must be defined. These parameters are the motion estimation block size, the initial search

area size, motion vector accuracy, and the number of motion vectors per block. For simplic-

ity, we set the block size to 8 × 8. Such a block size leads to good RD tradeoffs within the

DCT-based framework described in Section 3. We also set the size of the initial square search

area to +16 pixels. Since the application of our techniques is very low bit rate video coding,

sub-integer pixel accuracy estimates are neither required nor helpful. Finally, as B-frames are

used in our framework, only one motion vector per block is estimated.

Now, suppose that the video frame targeted for motion estimation is partitioned into 8 x 8

blocks. For each block, a vector d = (x, y) E $, where $ is the set of all possible vectors in a

variable search area, is sought that minimizes the Lagrangian

jM(d) = _ (I(r,n) - I(r + d,n- 1)) 2 + _ RM(d), (1)
rE1,V

where r is the spatial index of the image pixels, n is the time index, I(r, n) is the image intensity

at position r of the candidate block in the current frame, I(r + d, n - 1) is the image intensity

at position r + d of the matching block in the previous frame, }4/is the size of the matching

window, and RM(d) is the motion vector bit rate 1 Minimizing the Lagrangian RM(d) is

1 Note that only self-information estimates are computed during the Lagrangian minimization.



guaranteed only by considering all possible candidate motion vectors in the search area. The

computations involved in one search operation are squaring and adding together the differences

in the matching window W between the pixels of the current block and those of the candidate

block, and then adding the result to a biased estimated rate. The cost of each search operation

can be made smaller by either reducing the size of the matching window or by performing

sub-sampling techniques [1]. Either of these methods can lead to a significant reduction in

estimation performance. The method used in this work is the partial Lagrangian computation

approach, which is a generalization of the method described in [21]. A motion vector candidate

is rejected once the accumulated Lagrangian becomes larger than the current minimum value.

The term A RM(d) is first computed and compared to the minimum Lagrangian obtained so

far. If )_ RM(d) is larger, the motion vector candidate is rejected. Otherwise, the same test

is applied sequentially as the squared pixel differences are added, until either the accumulated

Lagrangian is larger than the minimum or all pixel differences within the window have been

added. This method can reduce the number of computations required for the minimization of

JM(d) by as much as 80% at very low bit rates. Unfortunately, however, the computational

load is still high, especially when the search area is large (e.g., -4-64). The obvious solution

is to minimize the size of the search area without sacrificing a significant loss in estimation

performance.

By accurately predicting the location of the best motion vector candidate, one can then

search a relatively small area in the neighborhood of the predicted motion vector, while still

locating the "optimal" motion vector. This is indeed possible, especially in very low bit rate

video applications, owing to the large amount of motion field redundancies within the same

frame as well as between consecutive frames. Figure 1 illustrates two examples of a motion

vector search area. Since there is usually a larger motion activity in the horizontal direction,

the search area shown in Figure l(b) may be more suitable. However, experimental results show

that the difference in the resulting performance is often insignificant. Our proposed method is

to first estimate the most likely integer motion vector v = (xi, yi) given a prediction model.

Then, only the candidate motion vectors in one of the small diamond-shaped search areas

whose center is v is considered. The x and y components of v are the closest integers to the

corresponding (generally real) components of the predicted motion vector.



2.1 Prediction

Assuming a fixed search area, we next discuss four different predictors: mean, weighted mean,

median, and statistical mean. The design of the prediction parameters is simplified by com-

puting correlation coefficients and mutual information values between motion vectors within a

sufficiently large 3-D region of support (ROS) and the current motion vector. Such a region

includes previously coded motion vectors representing blocks that are close spatially and/or

temporally. Figure 2 shows a 3-D ROS extending over two frames. Block G of the previous

frame is positioned at the same spatial location as the unlabeled block in the current frame

(or current block). The labels are the average correlation coefficients (cx, %) (top) and average

mutual information values (mz, my) (bottom) of the x and y components between the ROS

motion vectors and the current one (i.e., the motion vector of the current block). Note that

these values decrease rapidly as we go away from the current block along the spatio-temporal

axis, and that spatial dependencies are stronger than temporal ones.

Mean Predictor

The mean predicted motion vector is given by r¢ = _ _'--1 vk, which is the average of the K

motion vectors vk, evaluated for each x and y component independently. As confirmed by our

experimental results, only the vectors corresponding to the closest blocks (A,B,D) in Figure 2

should be used. Including poorly correlated motion vectors in the computation of the average

adversely affects prediction accuracy.

Weighted Mean Predictor

A more accurate predicted vector is given by r¢ = _ O_kVk, where the linear prediction

coefficients ak'S are closely related to the correlation coefficients shown in Figure 2. In this

work, the ak's are computed off-line using the well-known autocorrelation method. Based on

Figure 2, only the motion vectors representing the blocks (A,B,C,D) are significantly correlated

with the current motion vector. Thus, a fourth order predictor is used. A higher order predictor

improves slightly the prediction accuracy, but at the expense of a large increase in number of

computations. While this weighted mean predictor outperforms the uniform mean predictor

discussed above, further improvements in performance are expected by changing the values of

the coefficients ak's adaptively during encoding.



Median Predictor

Like those of the mean and weighted mean predicted vectors, the two components of the median

predicted vector are computed independently but using the same procedure. Two different

median predicted vectors are computed: one based on the H.263 3-block ROS (A,B,D) and

another based on a 5-block ROS (A,B,C,D,G). The two ROS's are shown in Figure 3. When

used in our simple DCT-based framework, the two ROS's performed similarly. As will be shown

later, the 3-block median predictor is better in terms of prediction performance. However, the

5-block median predictor has the additional advantage that it can more effectively hide channel

errors.

Statistical Mean Predictor

A more powerful non-linear predictor is the statistical mean vector r¢ = (_,_), whose two

components are also computed independently and in an identical manner. Without loss of

generality, we will next describe the procedure used to estimate _, the x component of re. The

scalar _ is the weighted average of x components of all possible motion vectors. The weighting

coefficients are equal to the conditional probabilities of the x components. The conditional

probabilities are determined using a finite-state machine (FSM) model that is represented by

a codebook, or a set of state code vectors. Each code vector represents a relatively large

set of template vectors ut. The components of the template vectors ut are feature symbols

representing the x components of previously coded motion vectors in the ROS. In other words,

a template vector ut is the output of a mapping function whose inputs are the ROS motion

vector x components, and is the input to a vector quantizer (VQ) whose codebook contains all

state code vectors. In this work, the following two mapping functions and VQs are considered:

1. Scalar quantized mean: the mean of the x components is computed alid scalar quantized.

The ROS associated with the x components is the one used in the computation of the

mean predicted vector. Each possible value of the scalar quantized mean represents a

template vector ut.

2. Scalar quantized weighted mean: the input to the scalar quantizer is the weighted mean,

computed using the same ROS adopted during the computation of the weighted mean

predicted vector.



ThestateVQ codebookisgeneratedon-line[11].Thecodebookis initializedwith onecode

vector uI the first templatevector. The next templatevectorut is comparedto Us1 If the

distortiond(ut, Us1) given by
N

d(ut,Us 1) = E tu_ - uis],

i=1

is less than a threshold T1, then ut is mapped to the state code vector Us1. Otherwise, ut

is added to the codebook. Similarly, each new vector ut is compared to all vectors in the

codebook. If the best matching code vector is still not a good match, as determined by the

threshold/71, then it is added to the eodebook. When the maximum codebook size is reached,

the least popular code vector is deleted before adding the new vector.

Next, suppose ut is the template vector whose components are the different feature symbols

u 1 u 2 . UsN} is searched, and theconsidered above. Then, an N-size state codebook C = { s, s,.. ,

probability table corresponding to the state code vector u s closest to ut is selected. Then, _ is

given by
Lx

= _p(xdus)x_, (2)
/----1

where p(xtlUs) is the probability of the motion vector x component x_ given state u s and Lx

is the number of all possible motion vectors.

Since both the codebook and the probability tables are adaptive, this procedure is expected

to yield very accurate statistical mean predicted motion vectors. Note that our implementation

of the statistical mean predictor does not require that the table probabilities be stored or even

directly processed. The estimates can be obtained easily by maintaining a counter for each

state code vector. Thus, such a prediction technique is relatively simple.

To summarize, the prediction performance clearly depends on the model parameters such

as the ROS, the estimation accuracy of the prediction coefficients, the bit rate of operation

and the content of the video scene. While FSM-based prediction is most accurate (as shown in

Section 5), it is worth noting that even for less accurate predictors such as the uniform mean or

the median, it is found that the FS-BMA yields at most 5% of the motion vectors that do not

belong to the diamond-shaped search area shown in Figure l(a). This should not be surprising,

since many of the low resolution video sequences such as MISS AMERICA exhibit very small/slow

motion and non-motion related variations.



2.2 Search Area Size

The size of the diamond-shaped search area can be expressed in terms of contours or layers,

as shown in Figure 1. Each layer represents many possible motion vectors. The number of

vectors per layer increases as a function of the distance from the center (layer 0 in Figure l(a))

of the search area. The number of layers that must be searched depends greatly on the required

accuracy of the predictor. A conceptually simple technique is to search a pre-determined fixed

number of layers, where the number is chosen such that a good balance between average number

of required computations and _stimation performance is achieved. However, this technique can

be inefficient, since if the prediction is accurate, the motion vector located at the center is

likely the best candidate. One solution is to halt the search if the Lagrangian J0, associated

with selecting and encoding the center motion vector, is relatively small. That is, if J0 < T2,

where T2 is a fraction of the current average Lagrangians associated with some previously

coded neighboring motion vectors, then the search can be safely stopped. Otherwise, all the

pre-specified layers are searched. The computation-performance tr_deoffs depend greatly on

the threshold T2. H T2 is too large, estimation performance can deteriorate. If it is too small,

many layers will have to be searched, which requires a large number of computations. Thus,

T_ should be selected adaptively given, for example, a constraint on the allowed number of

computations.

The above technique works well when motion vectors can be accurately predicted. A good

example is the well-known MISS AMERICA video sequence, where the background stays nearly

constant as a function of time. Moreover, with the exception of the eye and lip movements,

the nomzero motion vectors are very structured. In general, however, motion vectors can

only be approximate!y predicted, as motion can be fast and complex. Nevertheless, where

motion-related changes occur, the motion vectors can still be expected to be localized in the

neighborhood of the predicted vector.

Building on this notion of motion localization, we next introduce an alternative technique,

where we employ a probabillstic model that places a soft constraint on the size of the diamond-

shaped search area. First, let us assume that the search area is divided into layers, following

the configuration shown in Figure l(a). We also assume that the layers 0, 1, 2,... are searched

sequentially in the same order (i.e., layer 0, then layer 1, etc.) as we go away from the center

of the search area. Finally, let J0, J1, J2,... be the minimum Lagrangians associated with the

layers 0, 1, 2,..., respectively. We next propose two probabilistic models, where each model is



basedona specifichypothesis.Thetwo hypothesesare:

• HypothesisI: If Jn of layer n is larger than Jn-1 of layer n - 1, then it is unlikely that we

will find a better motion vector by continuing the search outward. Thus, searching more

layers is not necessary. This hypothesis is often violated in areas where the motion field

is not smooth. In such a case, the Lagrangian surface is likely not convex. Even when the

motion field is smooth, the search as specified by this hypothesis can quickly get trapped

in a local minimum.

• Hypothesis II: Only if Jn-1 < Jn < J_+l, will we be confident that searching more

layers for a better motion vector is wasteful. This hypothesis places a larger convexity

constraint on the search. It almost guarantees optimality, but at the expense of a much

larger computational load. Because this test may never be satisfied, we must limit the

number of considered layers to, for example, 16.

By using any of the two models corresponding to the above two hypotheses, we allow the

search area to expand or contract based on the local statistics of the motion field. Either model

can be better than the other in terms of computation-performance tradeoffs, depending on the

particular Video sequence

being coded. But the first model (Hypothesis I) would be the choice when computational

complexity is a major concern. As can be expected, both models fail in areas where many

non-motion changes occur. Finally, note any of the two models can be used interchangeably,

and the models can also be used in conjunction with the above threshold-based technique, as

dictated by performance and/or complexity constraints.

3 DCT-Based Video Coding Framework

The proposed motion predcition and search techniques are studied, analyzed, and tested within

a simple RD optimized DCT-based framework using only 8 × 8 vectors and involving only intra

or forward inter coding of the luminance Y component. For simplicity, the two chrominance

pictures are not coded. The first video frame is coded using the JPEG baseline coder. The

following frames in the same group are predictively coded. Predictive coding consists of motion

only coding, motion compensated prediction and DCT residual coding, or intra DCT coding.

As described in the previous section, each motion vector is obtained by searching a diamond-

shaped area whose center is the predicted motion vector and size is a variable that depends
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on the local statisticsof the motion field. The motion vectoris then representedby a vector

offsetwith respectto thepredictedmotionvector. Theentropiesof the x and y components of

the vector offset are used to estimate the motion vector bit rate. After determining the motion

vector d* leading to the minimum value of the Lagrangian jM(d), the corresponding 8 × 8

difference block is coded using essentially the same residual coder implemented in [7]. The only

difference is that the QUANT parameter qR E QR is chosen to minimize the Lagrangian

J_d*(qR) = Dd*(qR) + A Rd*(qR), (3)

where Rd,(qR) and Dd,(qR ) _re the DCT coder's average bit rate and mean squared error

(MSE), associated with qR E QR. Next, the original 8 × 8 block is intra coded by minimizing

the Lagrangian

Jl(qI) = D(qI) + AR(qI), (4)

where R(qi) and D(qI) are similarly the bit rate and MSE, associated with parameter q1 E Qz

of the intra DCT coder. Finally, let the quantity Rm be the bit rate associated with specifying

the mode m, where m = 1 represents motion only, ra = 2 represents motion compensated

prediction and DCT, and m = 3 represents intra DCT. By incorporating such information,

and other types of side information (e.g., quantizer number), the three Lagrangian values are

computed, and the mode leading to the smallest value is selected for the current 8 × 8 block.

Clearly, achieving the best RD performance can only be guaranteed by computing the three

Lagrangian values. This is computationally expensive, mainly because all 32 QUANT parameter

values would have to be considered. Fortunately, however, the average bit rates and MSEs do

not have to be computed for all QUANT values. In fact, even after exhaustive searching, only

a few QUANT values are selected most of the time, as is indicated by the skewed distribution

shown in Figure 4. Thus, very little loss in performance is sacificed when only the 2 - 4 most

likely QUANT values are considered.

4 R,D Optimized H.263 Framework

The above DCT-based framework simplifies the study and performance evaluation of the vari-

ous motion estimation techniques developed in this work. However, to illustrate the potential

computation-performance advantages of such techniques, we develop an H.263 compliant RD

optimized video coder where 1) motion vectors representing lumninance 16 × 16 blocks (Y-MBs)

are obtained, macroblocks _ (MBs) are motion compensation predicted, and the corresponding

2Each macroblock consists of one Y-MB and two chtominance 8 × 8 blocks.
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8 × 8 differenceblocksareDCT coded.The coderemploysthe simpleH.2632-Dmedianpre-

dictor, a motionsearchalgorithmbasedonHypothesisI, andanRD criterionfor the selection

betweenH.263'smacroblock(MB) codingmodes.DetailsabouttheRD optimizedH.263frame-

workcanbe foundin [12]. Wenext briefly describethe MB codingmodeselectioncriterion.

This is followedby a discussionof our RD and computationcontrolmethods,whicharemore

efficientthan the onesdevelopedin [12].

4.1 MB Coding Mode Selection Criterion

During intra coding of I-pictures, only the intra DCT coding mode is allowed. Our intra

DCT coder is similar to the one implemented in [7]. The only difference is that our selection

of a value for the quantizer paramater QUANT (5 bits) is based on an RD criterion. More

specifically, QUANT of the first MB is set to 16, and QUANT of each other MB is set during

the encoding process to the previous MB's QUANT value, which is likely adjusted by one of the

4 possible values of DQUANT (2 bits). The value of DQUANT (if any) is selected such that

the Lagrangian JI(A) = D1 + AR1, where RI and DI are the bit rate and MSE, is minimized.

During inter coding of P-pictures, the ideal MB coding mode selection method would be

to comput e six Lagrangians, each corresponding to one of the six H.263 principal modes, and

choosing the mode leading to the smallest Lagrangian value. The six principal modes are:

SKIP: The MB is skipped, and the COD parameter is set to 1.

INTER: One motion vector and the corresponding DCT coefficients are coded.

INTER-_-Q: Same as INTER except that QUANT is possibly changed.

INTER4V: Similar to INTER except that four motion vectors are coded.

INTRA: The 8 × 8 blocks of the original MB are DCT coded.

INTRA--_Q: Same as INTRA except that QUANT is possibly changed.

Although motion vector estimation and DCT coding are performed independently, and the

QUANT value is predicted (only 4 values are considered), computing all six Lagrangian val-

ues for each MB is generally impractical. Our approach to reducing the required number of

computations is to employ thresholding techniques that allow us to safely eliminate the expen-

sive INTRA and/or INTER coding options from consideration. Details about the H.263 RD

optimized MB coding mode selection method can be found in our other paper [12].
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4.2 RD and Computation Control

For different Lagrangian parameter values A's, different RD tradeoffs can be obtained. To

analyze and evaluate our search and prediction techniques within the DCT-based framework,

a heuristical procedure is used to estimate appropriate values for A. For a fair comparison

with the TMN5, however, the proposed H.263 coder must employ an algorithm that adaptively

provides an accurate estimate of the value of A given rate and/or distortion constraints. The

value of A can be estimated following the methods described in [22, 23, 17, 24]. Such methods,

however, either are iterative of require that accurate models be developed for the input video

signal. In this work, we propose an alternative method where the parameter A is updated during

the encoding process using a new recursion formula. Without loss of generality, let's assume

that we have a fixed-rate communication system that is governed by s(t + 1) = s(t) ÷ R(t) - B,

where t denotes time, s(t) is the size of the buffer, R(t) is the variable output bit rate of the

encoder, and B is the fixed output rate of the buffered contents. The parameter A is initially

estimated based on computed long-term statistics, and is then varied adaptively based on the

linear model described by the equation )_(t) = c s(t). Assuming that s* _ is the desired_-_ 2

buffer size, where S,_ax is the maximum physical buffer size, we can write _* = cs*. Thus,

another expression for A(t) is given by )_(t) = A* _.t. Then, if we recursively apply the formula

given by

_(t) = _(t- 1) s(t)
8" '

we should hopefully converge to the fixed point ),*. In practice, updating A based on the above

recursion formula is found to be an efficient solution. In fact, relative to the more complex

algorithm described in [12], this algorithm is shown experimentally to perform quite well. In

particular, using a buffer of size 10 kilobits, the problem of overflow/underflow was never

encountered during our coding simulations.

The Lagrangian parameter A does impact the computation demands of the video coder. For

example, a large value of A can reduce the number of computations substantially. However, such

number can be precisely controlled by appropriately selecting values for T1, T2, and other thresh-

old parameters. Given an explicit constraint, such as maximum number of adds/multiplies, the

threshold parameters can be increased or decreased so that the average number of computations

is close enough to the imposed constraint. An efficient recursive algorithm similar to the one

described above can be used for this purpose.
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5 Experimental Results

5.1 Introduction

The target bit rates for our experiments are in the range between 4 and 16 kbps for color

sequences. The MISS AMERICA and CAR PHONE sequences in QCIF format at 10 frames per

second are selected for testing. As stated earlier, only integer-pel accuracy motion estimation

is used. For fairness, the MSE cost measure is also used in TMN5's implementation of motion

estimation. Next, the prediction techniques discussed in this paper are evaluated in terms of

performance and complexity. This is followed by an analysis of the two search models defined

by Hypotheses I and II. Both the evaluation and analysis are performed using our simple DCT-

based framework. A comparison between our H.263 RD optimized video coder and the TMN5

is provided at the end of this section.

5.2 Prediction

Tables 1 and 2 show the average entropy for MISS AMERICA and CAR PHONE (respectively) of the

motion vector x component in the search area centered at the mean, weighted mean, median,

and statistical mean. There are two different mean predictors: (I) MEAN-A where the ROS in

Figure 2 consists of blocks (A,B,D) and (2) MEAN-B where the ROS consists of blocks (A,B,C,D).

As expected, MEAN-A leads to a lower entropy, as averaging many motion vectors adversely

affects prediction accuracy. Since MEAN-A and MEAN-B are special cases of the weighted mean

predictor (WM), the latter should yield better prediction accuracy. This is confirmed by the

results shown in the tables. It is clear that the 3-block (A,B,D) median predictor (MED-A)

outperforms the 5-block (A,B,C,D,G) median predictor (MED-B) in terms of both prediction

accuracy and complexity. With the exception of its potentially higher robustness to channel

errors, MED-B does not seem to be a good choice. When used to drive the FSM model, the

weighted mean (WM-SM) also outperforms the uniform mean (M-A-SM and M-B-SM) in terms

of prediction accuracy. Moreover, the statistical mean predictor (WM-SM) leads to a slightly

better performance than WM. Finally, notice that MED-A yields a lower entropy than the more

complex linear and statistical mean predictors. This, coupled with its higher robustness to

channel errors, is likely what made it part of the H.263 standard.

It is clear from Tables 1 and 2 that the differences in average entropies are relatively small.

This suggests that motion estimation/coding is not sensitive to prediction accuracy. Moreover,

as shown in Tables 3 and 4 for MISS AMERICA and CAR PHONE (respectively), prediction-based
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motion estimation/codingcomparesfavorablywith statistical FSM-basedestimation/coding

studiedin [15,16,11].In the latter case,anFSMmodelbasedondynamicVQ is employedfor

probability-basedestimationanddirect codingof themotionvectors(i.e., explicitpredictionis

not performed).

5.3 Search Area Size

Given a fixed prediction model, Figures 5 and 6 suggest that the two search models (represented

by Hypotheses I and II) discussed above lead to more than one order of magnitude reduction

in number of computations. The price paid is a relatively small loss in PSNR performance.

For the sequence MISS AMEttICA, the simpler model (Hypothesis I) yields better computation-

performance tradeoffs. However, the two models achieve similar tradeoffs for the more active

sequence CAR PHONE. It is nonetheless obvious that the two probabilistic models provide a

significant advantage over the FS-BMA. Moreover, the model based on Hypothesis I appears to

be the better alternative. Finally, besides the computational advantage, an important feature of

this approach is that computationM resources are better allocated, depending on the statistics

of the input video sequence.

5.4 Video Coder

Figure 7 shows a comparison in terms of average PSNR between the our H.263 coder and the

TMN5 (using all advanced options) of 150 frames of the MISS AMERICA sequence in the bit

rate range of interest. Our coder differs from the TMN5 in that it employs median-based pre-

dictive RD optimized motion estimation based on the proposed techniques and RD optimized

MB coding mode selection. Our coder performs significantly better than the TMN5, especially

at the lower bit rates. Not only the PSNR is higher, but the subjective quality is also supe-

rior. For example, we presented many viewers with 150 frames of the decoded color sequence

MIss AM_,RICA for several bit rates between 4 and 10 kbps. All the viewers reported that the

subjective quality of our coder is noticeably higher.

Not illustrated in the figure is the fact that using the H.263 3-block median for prediction

and applying Hypothesis I during the search process yields little or no loss in PSNR performance

as compared to the case when the FS-BMA is used. A clear advantage of the new prediction and

search techniques, however, is that the number of computations is reduced by approximately

20 : 1. Using our "C" implementation of the resulting coder, encoding requires 10 - 40 % of

the time required by the TMN5.
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6 Conclusions

We have studied and developed motion estimation techniques for very low bit rate video coding.

The techniques are analyzed within a simple DCT-based video coding framework, where a

simple RD criterion is used for alternating between three coding modes for each 8 × 8 block:

motion only, motion compensated prediction and DCT, and intra DCT. First, the complexity

and performance of four different predictors (mean, weighted mean, median, and statistical

mean) have been evaluated. The most important results are that (1) motion estimation and

coding is not very sensitive to'prediction accuracy and (2) the H.263 3-block median predictor

is a good choice when taking into consideration complexity, performance, and robustness to

channel errors. Second, two probabilistic models (e.g., Hypotheses I and II) are imposed that

allow the contraction or expansion of the search area depending on the statistics of the motion

field. Our experimental results have shown that this approach generally results in more than

one order of magnitude reduction in number of computations, while sacrificing an insignificant

loss in PSNR performance.

The proposed motion estimation techniques are also applied to an RD optimized H.263

framework. Simulation results indicate that at very low bit rates, the resulting video coder

significantly outperforms the TMN5 video coder both in terms of reproduction quality and

number of computations, simultaneously. An additional advantage of our coder is that the bit

rate and quality can be controlled through employing a simple iterative updating algorithm

for the Lagrangian parameter A. The computation requirements can Mso be controlled by

appropriately selecting values for the threshold parameters.
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Figure 1: Two examples of a motion vector search area.

PSNR

35.9

36.8

37.8

MEAN-A MEAN-B

0.566 0.569

0.620 0.635

0.689 0.679

WM

0.566

0.602

0.670

MED-A MED-B M-A-SM M-B-SM WM-SM

0.561 0.582 0.566 0.570 0.566

0.612 0.628 0.620 0.635 0.602

0.659 0.679 0.689 0.677 0.668

Table 1: Entropy for MISS AMERICA of motion vector x component offsets in the search area

centered at the mean (MEAN-A and MEAN-B), weighted mean (WM), median (MED-A and MED-

B), mean-based statistical mean (M-A-SM and M-B-SM), and weighted mean-based statisticM

mean (WM-SM).

PSNR

31.2

33.0

34.9

MEAN-A MEAN-B

1.686 1.737

2.008 2.044

2.318 2.335

WM

1.598

1.930

2.190

MED-A MED-B M-A-SM M-B-SM WM-SM

1.553 1.602 1.658 1.681 1.588

1.860 1.928 1.946 2.011 1.909

2.109 2.194 2.237 2.296 2.169

Table 2: Entropy for CAR PHONE of motion vector x component offsets in the search area

centered at the mean (MEAN-A and MEAN-B), weighted mean (WM), median (MED-A and MED-

B), mean-based statistical mean (M-A-SM and M-B-SM), and weighted mean-based statistical

mean (WM-SM).
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Figure 2: Average correlation coefficients (c=, Cy) (top) and average mutual information values

(rex, my) (bottom) between the ROS motion vectors and the current one.
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9.

PSNR

35.9

36.8

37.8

WM-SM FSM

0.569 0.498

0.602 0.547

0.668 0.592

Table 3: Comparison between the FSM (PSM) entropy of the motion vector x components and

entropy of the x component offsets of those motion vectors located in the search area centered

at the weighted mean-based statistical mean (WM-SM) for the sequence MISS AMERICA.

PSNR WM-SM FSM

31.2 1.598 1.469

33.0 1.930 1.751

34.9 2.190 2.026

Table 4: Comparison between the FSM (PSM) entropy of the motion vector x components and

entropy of the x component offsets of those motion vectors located in the search area centered

at the weighted mean-based statistical mean (WM-SM) for the sequence CAR PHONE.
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Figure 5: Performance of the probabilistic models in terms of PSNR and number of computa-
tions relative to the FS-BMA: Miss AMERICA.
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Figure 6: Performance of the probabilistic models in terms of PSNR and number of computa-
tions relative to the FS-BMA: CAR PHONE.
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Figure 7: PSNR comparison between our coder and the TMN5 (all advanced options, MSE in

motion estimation) for the test sequence MISS AMERICA at bit rates between 3 and 16 kbps.

The comparison is based on the average PSNR of 150 color frames at 10 frames/sec.
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